본문 바로가기
반응형

분류 전체보기1011

집에서 태양광 말고도 전기를 만들 수 있을까? 가정용 발전기·대안 에너지 총정리 집에서 태양광 말고도 전기를 만들 수 있을까? 가정용 발전기·대안 에너지 총정리“가능은 하지만, 집이라는 환경(소음·배기·안전·인허가·공간) 때문에 선택지가 확 좁아집니다.” 현실적인 옵션과 개발 로드맵을 정리했습니다. I. 결론부터: 태양광 외 현실적인 TOP 3인버터 엔진 발전기(비상용) + 배터리/인버터 시스템 가장 즉시 실용가정용 연료전지/가스 기반 CHP (조용 + “전기+열” 회수)소수력(가능한 입지라면 체감 발전량 최고) → 그 다음이 풍력(조건부)핵심은 “발전기 자체”보다 안전한 전력계통 설계(계통 분리, 차단, 접지, 역송전 방지)입니다. 옵션현실성(집)장점주의/단점추천 목적엔진 발전기(가솔린/디젤/가스)★★★★★즉시 발전, 출력 큼소음·배기·연료 안전정전 대비연료전지/CHP★★★☆☆조.. 2026. 2. 1.
온디바이스(Edge) 추론 vs 클라우드 추론: 차이점, 장단점, 선택 기준 총정리 온디바이스(Edge) 추론 vs 클라우드 추론: 차이점, 장단점, 선택 기준 총정리I. 한 줄로 정리하면온디바이스(Edge) 추론스마트폰·PC·차량 ECU·공장 게이트웨이·CCTV 같은 사용자 가까운 기기에서 모델을 직접 실행합니다. 네트워크가 없어도 동작 가능하며, 원본 데이터가 밖으로 나가지 않게 설계할 수 있습니다. 클라우드 추론입력을 서버로 보내 데이터센터(GPU/TPU)에서 모델을 실행한 뒤 결과를 내려줍니다. 더 큰 모델·더 높은 품질·대규모 처리가 가능하지만 네트워크와 운영 비용의 영향을 받습니다. II. 구조 차이: 데이터가 어디로 흐르나?1. 온디바이스(Edge) 추론의 데이터 흐름센서/앱 입력 (카메라·마이크·텍스트 등)기기 내부의 NPU/GPU/CPU에서 추론 실행결과(라벨·요약·제.. 2026. 2. 1.
스타트업 관점에서 “학습(Training) vs 추론(Inference)” 어디에 비용을 써야 하는가 스타트업 관점에서 “학습(Training) vs 추론(Inference)” 어디에 비용을 써야 하는가한 줄 결론대부분의 초기 스타트업은 학습(Training)보다 추론(Inference) 최적화에 돈을 쓰는 편이 ROI가 큽니다. 다만 “독점 데이터·규제/보안·초저지연·단가 압박” 같은 조건이 갖춰지면 학습 투자가 핵심 레버리지로 바뀝니다. I. 왜 이 질문이 중요한가스타트업의 AI 비용은 크게 두 갈래입니다. 학습(Training)은 한 번 크게 들어가는 CAPEX 성격이 강하고, 추론(Inference)은 서비스가 돌아가는 동안 계속 발생하는 OPEX 성격이 강합니다. “차별화가 모델 자체에 있으면 학습에, 차별화가 제품/데이터/워크플로우에 있으면 추론에 투자하라.” 현실적으로는 초기 단계에서 문제.. 2026. 2. 1.
GPU vs NPU: 왜 NPU가 추론(Inference)에 강한가? GPU vs NPU: 왜 NPU가 추론(Inference)에 강한가?NPU가 ‘추론’에서 특히 강하다고 말하는 이유는 성능(TOPS) 자체보다, 추론에서 반복되는 연산 패턴과 메모리 이동 비용, 저전력 제약에 맞춰 하드웨어가 처음부터 최적화되어 있기 때문입니다. I. 한 문장 요약: NPU가 추론에 강한 이유NPU는 “추론에서 가장 자주 등장하는 연산(행렬곱/컨볼루션/어텐션)”과 “메모리 이동·전력 예산”을 기준으로 설계된 전용 가속기라서, 같은 조건에서 더 낮은 전력으로 더 높은 처리량을 내기 쉽습니다. GPU도 추론을 잘하지만, GPU는 원래 그래픽/범용 병렬 컴퓨팅을 크게 커버해야 하는 구조라 추론만을 위한 ‘최소 이동·최소 오버헤드’ 설계에서는 NPU가 더 유리해지는 구간이 자주 생깁니다. II.. 2026. 1. 31.
Apple Neural Engine vs Intel NPU vs Snapdragon NPU: 온디바이스 성능/전력 효율 차이 완전 정리 Apple Neural Engine vs Intel NPU vs Snapdragon NPU: 온디바이스 성능/전력 효율의 차이“AI PC”와 “온디바이스 AI”가 대세가 되면서, 이제는 CPU·GPU 못지않게 NPU(Neural Processing Unit)가 노트북/태블릿의 체감 성능과 배터리 시간을 좌우합니다. 하지만 숫자(예: TOPS)만 보고 고르면 실제 사용에서 실망하기 쉽습니다.이 글의 결론: NPU 비교의 핵심은 “피크 TOPS”가 아니라 ① 메모리 이동(대역폭/통합 메모리) ② 정밀도(양자화) ③ OS/런타임 스케줄링 ④ 지속 성능(발열/전력)입니다.Apple Neural Engine(ANE): 칩·OS·프레임워크가 수직 통합 → “꾸준히 잘 나오는” 체감이 강함.Snapdragon(퀄컴).. 2026. 1. 31.
AI PC에서 CPU·GPU·NPU는 실제로 어떻게 분업할까? (로컬 LLM·영상 보정·회의 요약) AI PC에서 CPU·GPU·NPU는 실제로 어떻게 분업할까?로컬 LLM · 영상 보정 · 회의 요약을 예시로, “온디바이스 AI 파이프라인” 관점에서 현실적인 분업 구조를 정리합니다. I. 한 문장 요약: CPU·GPU·NPU 역할1. CPU = 지휘/연결앱 로직, 스케줄링, 데이터 전처리·후처리, I/O, 네트워크, 저장/검색, 프롬프트 구성 같은 “AI를 돌리기 위한 주변 작업”을 맡습니다.2. GPU = 큰 병렬 연산 + 그래픽대규모 행렬 연산(특히 모델이 큰 경우), 고해상도 영상 처리, 렌더링/합성/인코딩 등 “무거운 처리량(Throughput)”에 강합니다.3. NPU = 상시·저전력 인퍼런스카메라/마이크 상시 효과, 실시간 AI 보정, 배터리 친화적인 추론처럼 “항상 켜두는 워크로드”에 .. 2026. 1. 31.
반응형