본문 바로가기
반응형

데이터사이언스2

Decision Tree와 Random Forest 완벽 정리: 원리, 장단점, 비교, 활용법 Decision Tree와 Random Forest 완벽 정리원리, 장단점, 비교, 실무 활용까지결정트리(Decision Tree)는 직관적이고 해석이 쉬운 모델이지만 과적합에 취약합니다. 랜덤 포레스트(Random Forest)는 여러 트리를 결합(앙상블)해 안정적인 성능을 내며 실무에서 매우 널리 사용됩니다. I. Decision Tree(결정트리)란?Decision Tree는 데이터를 “질문(조건)”으로 나누며 학습하는 트리 기반 모델입니다. 루트 노드에서 시작해 내부 노드에서 조건 분기(split)를 반복하고, 최종적으로 리프 노드(leaf)에서 예측값을 출력합니다. 핵심 직관: “가장 잘 구분되는 질문을 먼저 던지고, 그 다음 질문을 이어가며 데이터를 점점 더 순수(동일 클래스 또는 유사한 값.. 2026. 1. 22.
TensorFlow란? 개념부터 학습·배포 생태계까지 한 번에 정리 TensorFlow란? 핵심 개념부터 학습·배포 생태계까지 한 번에 정리I. TensorFlow 한 줄 정의TensorFlow는 구글이 주도하는 오픈소스 머신러닝/딥러닝 프레임워크로, 데이터 준비부터 모델 학습, 평가, 그리고 서비스 배포(서버/모바일/브라우저/엣지)까지 전 과정을 하나의 생태계로 묶어 제공하는 것이 특징입니다. 핵심 요약: “모델을 만들고 끝”이 아니라, 학습 → 최적화 → 저장 → 배포까지 한 번에 이어지는 엔드투엔드(End-to-End) 경험을 제공하는 플랫폼에 가깝습니다. II. TensorFlow의 핵심 원리: 텐서·자동미분·실행 엔진A. 텐서(Tensor): 데이터의 표준 단위Tensor는 다차원 배열(스칼라, 벡터, 행렬, 고차원 텐서 포함)을 의미합니다.NumPy 배열과 .. 2026. 1. 22.
반응형